Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 3 - The Logic of Quantified Statements - Exercise Set 3.3 - Page 131: 49

Answer

a. True. For every object x, you can choose an object y that is not the same as x and has a different color than x. b. Formal: $\forall x$(Object(x) $\rightarrow$ ($\exists y$ (Object(y) $\land$ $x \neq y$ $\land$ DifferentColor(x,y)))) c. Negation: $\exists x$ (Object(x) $\land$ ($\forall y$ (~Object(y) $\lor$ $x = y$ $\lor$ ~DifferentColor(x,y))))

Work Step by Step

c. Negation: ~($\forall x$(Object(x) $\rightarrow$ ($\exists y$ (Object(y) $\land$ $x \neq y$ $\land$ DifferentColor(x,y))))) $\equiv$ $\exists x$ ~(Object(x) $\rightarrow$ ($\exists y$ (Object(y) $\land$ $x \neq y$ $\land$ DifferentColor(x,y)))) (by the law for negating a $\forall$ statement) $\equiv$ $\exists x$ (Object(x) $\land$ ~($\exists y$ (Object(y) $\land$ $x \neq y$ $\land$ DifferentColor(x,y)))) (by the law for negation an if-then statement) $\equiv$ $\exists x$ (Object(x) $\land$ ($\forall y$ ~(Object(y) $\land$ $x \neq y$ $\land$ DifferentColor(x,y)))) (by the law for negating an $\exists$ statement) $\equiv$ $\exists x$ (Object(x) $\land$ ($\forall y$ (~Object(y) $\lor$ $x = y$ $\lor$ ~DifferentColor(x,y)))) (by De Morgan's law)
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.