Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 3 - The Logic of Quantified Statements - Exercise Set 3.3 - Page 131: 53

Answer

a. True. Circle b is black and squares h and j are black also. b. Formal version: ∃x(Circle(x) ∧ (∃y(Square(y) ∧ SameColor(x, y)))) c. Formal negation: ∀x(∼Circle(x) ∨ (∀y(∼Square(y) ∨∼SameColor(x, y))))

Work Step by Step

c. ~(∃x(Circle(x) ∧ (∃y(Square(y) ∧ SameColor(x, y))))) $\equiv$ $\forall$x ~(Circle(x) ∧ (∃y(Square(y) ∧ SameColor(x, y)))) (by the law of negating an $\exists$ statement) $\equiv$ $\forall$x (~Circle(x) $\lor$ ~(∃y(Square(y) ∧ SameColor(x, y)))) (by De Morgan's Law) $\equiv$ $\forall$x (~Circle(x) $\lor$ ($\forall$y ~(Square(y) ∧ SameColor(x, y)))) (by the law of negating an $\exists$ statement) $\equiv$ $\forall$x (~Circle(x) $\lor$ ($\forall$y (~Square(y) $\lor$ ~SameColor(x, y)))) (by De Morgan's law)
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.