Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 3 - The Logic of Quantified Statements - Exercise Set 3.4 - Page 143: 19

Answer

$\forall x$, if $x$ is a good car, then $x$ is not cheap. a. valid by universal modus ponens b. invalid by converse error c. valid by universal modus tollens d. invalid by inverse error

Work Step by Step

For all of the cases, P(x) is: x is a good car. Q(x) is: x is not cheap. a. Universal modus ponens: $\forall x, $ if $P(x)$ then $Q(x)$. $P(a)$ for a particular $a$. $\therefore Q(a)$. b. Converse Error: $\forall x$ if $P(x)$ then $Q(x)$. $Q(a)$ for a particular $a$. $\therefore P(a)$. (invalid conclusion) c. Universal modus tollens: $\forall x, $ if $P(x)$ then $Q(x)$. ~$Q(a)$ for a particular $a$. ~$\therefore P(a)$. d. Inverse Error: $\forall x$ if $P(x)$ then $Q(x)$. ~$P(a)$ for a particular $a$. $\therefore$ ~$Q(a)$. (invalid conclusion)
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.