Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 1 - Graphs - 1.4 Circles - 1.4 Assess Your Understanding - Page 38: 11

Answer

$\left(x-\frac{5}{2}\right)^2+(y-2)^2=\left(\frac{3}{2}\right)^2$. $r=\frac{3}{2}$ $C=\left(\frac{5}{2},2\right)$

Work Step by Step

$C$ is the midpoint of the two given points, hence $C=\left(\frac{4+1}{2},\frac{2+2}{2}\right)=\left(\frac{5}{2},2\right).$ The general equation for a circle with radius $r$ and centre $(h,k)$ is: $(x-h)^2+(y-k)^2=r^2$. The distance formula from $P_1(x_1,y_1)$ to $P_2(x_2,y_2)$ is $d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$. Hence here: $r=\sqrt{\left(\frac{5}{2}-1\right)^2+(2-2)^2}=\sqrt{\frac{9}{4}+0}=\sqrt{\frac{9}{4}}=\frac{3}{2}.$ Hence our equation: $\left(x-\frac{5}{2}\right)^2+(y-2)^2=\left(\frac{3}{2}\right)^2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.