Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 2 - Functions and Their Graphs - 2.1 Functions - 2.1 Assess Your Understanding - Page 57: 45

Answer

a) $f(0)=0$ b) $f(1)=\frac{1}{2}$ c) $f(-1)=-\frac{1}{2}$ d) $f(-x)=-\frac{x}{x^2+1}$ e) $-f(x)=-\frac{x}{x^2+1}$ f) $f(x+1)=\frac{x+1}{x^2+2x+2}$ g) $f(2x)=\frac{2x}{4x^2+1} $ h) $f(x+h)=\frac{x+h}{(x+h)^2+1}=\frac{x+h}{x^2+2xh+h^2+1}$

Work Step by Step

Given $f(x)=\frac{x}{x^2+1}$ a) To Evaluate $f(0)$ in the given function, substitute $0$ in the place of $x$. $f(0)=\frac{0}{0^2+1}=0$ (b). To Evaluate $f(1)$ in the given function, substitute $1$ in the place of $x$. $f(1)=\frac{1}{1^2+1}= \frac{1}{2}$ (c). To Evaluate $f(−1)$ in the given function, substitute $−1$ in the place of $x$. $f(-1)=\frac{-1}{(-1)^2+1}= -\frac{1}{2}$ (d) To Evaluate $f(−x)$ in the given function, substitute $−x$ in the place of $x$. $f(-x)=\frac{-x}{(-x)^2+1}=-\frac{x}{x^2+1}$ (e) To Evaluate $−f(x)$ in the given function, $-f(x)=-\frac{x}{x^2+1}$ (f) To Evaluate $f(x+1)$ in the given function, substitute x+1 in the place of x. $f(x+1)=\frac{x+1}{(x+1)^2+1}=\frac{x+1}{x^2+2x+1+1}=\frac{x+1}{x^2+2x+2}$ (g) To Evaluate $f(2x)$ in the given function, substitute $2x$ in the place of $x$. $f(2x)=\frac{2x}{(2x)^2+1}=\frac{2x}{4x^2+1} $ (h) To Evaluate $f(x+h)$ in the given function, substitute $x+h$ in the place of $x$. $f(x+h)=\frac{x+h}{(x+h)^2+1}=\frac{x+h}{x^2+2xh+h^2+1}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.