Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 2 - Functions and Their Graphs - 2.1 Functions - 2.1 Assess Your Understanding - Page 57: 49

Answer

a) $f(0)=-\frac{1}{5}$ (b) $f(1)=-\frac{3}{2}$ (c)$f(-1)=\frac{1}{8}$ (d) $f(-x)=\frac{2x-1}{3x+5}$ (e) $-f(x) \frac{-2x-1}{3x-5}$ (f) $f(x+1)=\frac{2x+3}{3x-2}$ (g) $f(2x)=\frac{4x+1}{6x-5}$ (h) $f(x+h)=\frac{2x+2h+1}{3x+3h-5}$

Work Step by Step

Given $f(x)=\frac{2x+1}{3x-5}$ a) To Evaluate $f(0)$ in the given function, substitute $0$ in the place of $x$. $f(0)=\frac{2(0)+1}{3(0)-5}=\frac{0+1}{0-5}=-\frac{1}{5}$ (b). To Evaluate $f(1)$ in the given function, substitute $1$ in the place of $x$. $f(1)=\frac{2(1)+1}{3(1)-5}=\frac{2+1}{3-5}=\frac{3}{-2}=-\frac{3}{2}$ (c). To Evaluate $f(−1)$ in the given function, substitute $−1$ in the place of $x$. $f(-1)=\frac{2(-1)+1}{3(-1)-5}=\frac{-2+1}{-3-5}=\frac{-1}{-8}=\frac{1}{8}$ (d) To Evaluate $f(−x)$ in the given function, substitute $−x$ in the place of $x$. $f(-x)=\frac{2(-x)+1}{3(-x)-5}=\frac{-2x+1}{-3x-5}=\frac{2x-1}{3x+5}$ (e) To Evaluate $−f(x)$ in the given function, $-f(x)=-(\frac{2x+1}{3x-5}) = \frac{-2x-1}{3x-5}$ (f) To Evaluate $f(x+1)$ in the given function, substitute $x+1$ in the place of $x$. $f(x+1)=\frac{2(x+1)+1}{3(x+1)-5}=\frac{2x+2+1}{3x+3-5}=\frac{2x+3}{3x-2}$ (g) To Evaluate $f(2x)$ in the given function, substitute $2x$ in the place of $x$. $f(2x)=\frac{2(2x)+1}{3(2x)-5}=\frac{4x+1}{6x-5}$ (h) To Evaluate $f(x+h)$ in the given function, substitute $x+h$ in the place of $x$. $f(x+h)=\frac{2(x+h)+1}{3(x+h)-5}=\frac{2x+2h+1}{3x+3h-5}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.