Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 2 - Functions and Their Graphs - 2.1 Functions - 2.1 Assess Your Understanding - Page 57: 48

Answer

a) $f(0)=0$ (b) $f(1)=\sqrt {2}$ (c) $f(-1)=0$ (d) $f(-x)= \sqrt {x^2-x}$ (e) $-f(x)=-\sqrt {x^2+x}$ (f) $f(x+1)=\sqrt {x^2+3x+2}$ (g) $f(2x)=\sqrt {4x^2+2x}$ (h) $f(x+h)=\sqrt {x^2+2xh+h^2+x+h}$

Work Step by Step

Given $f(x)=\sqrt {x^2+x}$ a) To Evaluate $f(0)$ in the given function, substitute $0$ in the place of $x$. $f(0)=\sqrt {0^2+0}=\sqrt {0^2}=0$ (b). To Evaluate $f(1)$ in the given function, substitute $1$ in the place of $x$. $f(1)=\sqrt {1^2+1}=\sqrt {1+1}=\sqrt {2}$ (c). To Evaluate $f(−1)$ in the given function, substitute $−1$ in the place of $x$. $f(-1)=\sqrt {(-1)^2-1}=\sqrt {1-1}=\sqrt {0}=0$ (d) To Evaluate $f(−x)$ in the given function, substitute $−x$ in the place of $x$. $f(-x)= \sqrt {(-x)^2+(-x)}=\sqrt {x^2-x}$ (e) To Evaluate $−f(x)$ in the given function, $-f(x)=-\sqrt {(x)^2+x}=-\sqrt {x^2+x}$ (f) To Evaluate $f(x+1)$ in the given function, substitute $x+1$ in the place of $x$. $f(x+1)=\sqrt {(x+1)^2+(x+1)}=\sqrt {x^2+2x+1+x+1}=\sqrt {x^2+3x+2}$ (g) To Evaluate $f(2x)$ in the given function, substitute $2x$ in the place of $x$. $f(2x)=\sqrt {(2x)^2+2x}=\sqrt {4x^2+2x}$ (h) To Evaluate $f(x+h)$ in the given function, substitute $x+h$ in the place of $x$. $f(x+h)=\sqrt {(x+h)^2+(x+h)}=\sqrt {x^2+2xh+h^2+x+h}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.