Answer
$\frac{x^3-25x+6}{x+5}$
Work Step by Step
Step 1. Perform operations to the numerator:
$\frac{6}{x^2-25}+x=x+\frac{6}{x^2-25}=\frac{x^3-25x+6}{x^2-25}=\frac{x^3-25x+6}{(x+5)(x-5)}$
Step 2. Use the above result in the original expression, we have:
$\frac{\frac{6}{x^2-25}+x}{\frac{1}{x-5}}=\frac{\frac{x^3-25x+6}{(x+5)(x-5)}}{\frac{1}{x-5}}=\frac{x^3-25x+6}{(x+5)(x-5)}\cdot\frac{x-5}{1}=\frac{x^3-25x+6}{x+5}$