Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter R - Review of Basic Concepts - Test - Page 86: 21

Answer

$\frac{x^4(x+1)}{3(x^2+1)}$

Work Step by Step

Step 1. Change the division to multiplication and factor the expressions, we have $\frac{5x^2-9x-2}{30x^3+6x^2}\div\frac{x^4-3x^2-4}{2x^8+6x^7+4x^6}=\frac{5x^2-9x-2}{30x^3+6x^2}\times\frac{2x^8+6x^7+4x^6}{x^4-3x^2-4}=\frac{(5x+1)(x-2)}{6x^2(5x+1)}\times\frac{2x^6(x^2+3x+2)}{(x^2-4)(x^2+1)}$ Step 2. Cancel common factors and continue factoring, we have $\frac{(5x+1)(x-2)}{6x^2(5x+1)}\times\frac{2x^6(x^2+3x+2)}{(x^2-4)(x^2+1)}=\frac{(x-2)}{3}\times\frac{x^4(x+1)(x+2)}{(x+2)(x-2)(x^2+1)} =\frac{1}{3}\times\frac{x^4(x+1)}{(x^2+1)}=\frac{x^4(x+1)}{3(x^2+1)}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.