Answer
a.) 3
b.) $\frac{13}{20}$
Work Step by Step
a.) $\frac{2}{3}$(6- $\frac{3}{2}$)
Use the Distributive Property
$\frac{2}{3}$$\times$$\frac{6}{1}$ - $\frac{2}{3}$$\times$$\frac{3}{2}$
Simplify
$\frac{12}{3}$ - $\frac{1}{1}$
4 - 1 = 3
b.) (3 + $\frac{1}{4}$)(1 - $\frac{4}{5}$)
Use the Distributive Property
1(3 + $\frac{1}{4}$) - $\frac{4}{5}$(3 +$\frac{1}{4}$)
Use Distributive Property again
(1$\times$3 + 1$\times$$\frac{1}{4}$) - ($\frac{4}{5}$$\times$$\frac{3}{1}$ + $\frac{4}{5}$$\times$$\frac{1}{4}$)
Simplify
3 + $\frac{1}{4}$ - ($\frac{12}{5}$ + $\frac{4}{20}$)
The Least Common Denominator of 1, 4, 5, and 20 = 20. Apply the minus sign (-1) to all variables in the parenthesis.
$\frac{60}{20}$ + $\frac{5}{20}$ - $\frac{48}{20}$ - $\frac{4}{20}$ = $\frac{13}{20}$