Answer
$x=-\dfrac{1}{2}$
Work Step by Step
$\sqrt{3}x+\sqrt{12}=\dfrac{x+5}{\sqrt{3}}$
We can take the denominator $\sqrt{3}$ to multiply to the left side of the equation:
$\sqrt{3}\sqrt{3}x+\sqrt{3}\sqrt{12}=x+5$
Let's remember that $\sqrt{a}\sqrt{b}=\sqrt{ab}$. Apply this property to evaluate the products present in the equation:
$\sqrt{(3)(3)}x+\sqrt{(3)(12)}=x+5$
$\sqrt{9}x+\sqrt{36}=x+5$
Simplify and solve for $x$:
$3x+6=x+5$
$3x-x=5-6$
$2x=-1$
$x=-\dfrac{1}{2}$