Applied Statistics and Probability for Engineers, 6th Edition

Published by Wiley
ISBN 10: 1118539710
ISBN 13: 978-1-11853-971-2

Chapter 3 - Section 3-5 - Discrete Uniform Distribution - Exercises - Page 79: 3-83

Answer

Mean: $22.5$ Variance: $206.25$ Standard deviation: $14.36$

Work Step by Step

Random variable $X$ has a discrete uniform distribution with the parameters: $$ a=0, b=9 $$ Calculate the mean and the variance: $$ \mathbb{E}(X)=\frac{0+9}{2}=4.5 $$ $$ \operatorname{Var}(X) =\frac{(9-0+1)^{2}-1}{12}=8.25 $$ $$ \sigma_{X} =\sqrt{\operatorname{Var}(X)}=2.87 $$ Now calculate the mean, variance and standard deviation for the random variable $5 X :$ $$ \mathbb{E}(5 X) =5 \times \mathbb{E}(X)=[22.5] $$ $$ \operatorname{Var}(5 X) =\mathbb{E}\left((5 X-\mathbb{E}(5 X))^{2}\right)=\mathbb{E}\left((5 X-5 \mathbb{E}(X))^{2}\right) $$ $$ =5^{2} \times \mathbb{E}\left((X-\mathbb{E}(X))^{2}\right)=25 \times \operatorname{Var}(X)=206.25 $$ $$\sigma_{5 X}=\sqrt{\operatorname{Var}(5 X)}=\left[\begin{array}{l}{14.36}\end{array}\right]$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.