Answer
Thus each shorter side = 8
Work Step by Step
In a 45°–45°–90° triangle, if each of the shorter side is 'x'. then as per Pythagorean theorem-
$longest side^{2}$ = $x^{2} + x^{2}$ = 2$x^{2}$
Therefore longest side = $x\sqrt 2$
Given that longest side is $ 8\sqrt 2$
Hence each shorter side = $ \frac{8\sqrt 2}{\sqrt 2} $ = 8
Thus each shorter side = 8