Trigonometry 7th Edition

Published by Cengage Learning
ISBN 10: 1111826854
ISBN 13: 978-1-11182-685-7

Chapter 1 - Section 1.3 - Definition I: Trigonometric Functions - 1.3 Problem Set - Page 31: 11

Answer

$\sin\theta$ = -$ \frac{1}{2}$ $\cos\theta$ =$ \frac{\sqrt 3}{2}$ $\tan\theta$ = - $ \frac{1}{\sqrt 3}$ $\cot\theta$ = - $ \sqrt 3$ $\sec\theta$ =$ \frac{2}{\sqrt 3}$ $\csc\theta$ = - 2

Work Step by Step

Given, point $(\sqrt 3, -1)$ is on the terminal side of $\theta$, we may apply Definition I to find all six trigonometric functions- We got $ x = \sqrt 3, y = -1$ Therefore r= $\sqrt (x^{2} + y^{2})$ = $\sqrt ((\sqrt 3)^{2} + (-1)^{2})$ = $\sqrt (3 + 1)$ = $\sqrt (4)$ = 2 i.e. $ x = \sqrt 3, y = -1,$ and $ r= 2$ Applying Definition I- $\sin\theta$ =$ \frac{y}{r}$ = $ \frac{-1}{2}$ = -$ \frac{1}{2}$ $\cos\theta$ =$ \frac{x}{r}$ =$ \frac{\sqrt 3}{2}$ $\tan\theta$ =$ \frac{y}{x}$ =$ \frac{-1}{\sqrt 3}$ = - $ \frac{1}{\sqrt 3}$ $\cot\theta$ =$ \frac{x}{y}$ =$ \frac{\sqrt 3}{-1}$ = - $ \sqrt 3$ $\sec\theta$ =$ \frac{r}{x}$ =$ \frac{2}{\sqrt 3}$ $\csc\theta$ =$ \frac{r}{y}$ =$ \frac{2}{-1}$ = - 2
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.