Trigonometry 7th Edition

Published by Cengage Learning
ISBN 10: 1111826854
ISBN 13: 978-1-11182-685-7

Chapter 1 - Section 1.3 - Definition I: Trigonometric Functions - 1.3 Problem Set - Page 31: 16

Answer

$\sin\theta$ = $ \frac{n}{\sqrt (m^{2} + n^{2})}$ $\cos\theta$ =$ \frac{m}{\sqrt (m^{2} + n^{2})}$ $\tan\theta$ =$ \frac{n}{m}$ $\cot\theta$ =$ \frac{m}{n}$ $\sec\theta$ =$ \frac{\sqrt (m^{2} + n^{2})}{m}$ $\csc\theta$ =$ \frac{\sqrt (m^{2} + n^{2})}{n}$

Work Step by Step

Given, point (m, n) is on the terminal side of $\theta$, we may apply Definition I to find all six trigonometric functions- We got $ x = m, y = n$ Therefore r= $\sqrt (x^{2} + y^{2})$ = $\sqrt (m^{2} + n^{2})$ i.e. $ x = m, y = n,$ and $ r= \sqrt (m^{2} + n^{2})$ Applying Definition I- $\sin\theta$ =$ \frac{y}{r}$ = $ \frac{n}{\sqrt (m^{2} + n^{2})}$ $\cos\theta$ =$ \frac{x}{r}$ =$ \frac{m}{\sqrt (m^{2} + n^{2})}$ $\tan\theta$ =$ \frac{y}{x}$ =$ \frac{n}{m}$ $\cot\theta$ =$ \frac{x}{y}$ =$ \frac{m}{n}$ $\sec\theta$ =$ \frac{r}{x}$ =$ \frac{\sqrt (m^{2} + n^{2})}{m}$ $\csc\theta$ =$ \frac{r}{y}$ =$ \frac{\sqrt (m^{2} + n^{2})}{n}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.