Trigonometry 7th Edition

Published by Cengage Learning
ISBN 10: 1111826854
ISBN 13: 978-1-11182-685-7

Chapter 1 - Section 1.3 - Definition I: Trigonometric Functions - 1.3 Problem Set - Page 31: 7

Answer

$\sin\theta$ = $ \frac{12}{13}$ $\cos\theta$ = -$ \frac{5}{13}$ $\tan\theta$ = - $ \frac{12}{5}$ $\cot\theta$ = - $ \frac{5}{12}$ $\sec\theta$ = -$ \frac{13}{5}$ $\csc\theta$ = $ \frac{13}{12}$

Work Step by Step

Given, point (-5, 12) is on the terminal side of $\theta$, we may apply Definition I to find all six trigonometric functions- We got $ x = -5, y = 12$ Therefore r= $\sqrt (x^{2} + y^{2})$ = $\sqrt ((-5)^{2} + (12)^{2})$ = $\sqrt (25 + 144)$ = $\sqrt (169)$ = 13 i.e. $ x = -5, y = 12,$ and $ r= 13$ Applying Definition I- $\sin\theta$ =$ \frac{y}{r}$ = $ \frac{12}{13}$ $\cos\theta$ =$ \frac{x}{r}$ =$ \frac{-5}{13}$ = -$ \frac{5}{13}$ $\tan\theta$ =$ \frac{y}{x}$ =$ \frac{12}{-5}$ = - $ \frac{12}{5}$ $\cot\theta$ =$ \frac{x}{y}$ =$ \frac{-5}{12}$ = - $ \frac{5}{12}$ $\sec\theta$ =$ \frac{r}{x}$ =$ \frac{13}{-5}$ = -$ \frac{13}{5}$ $\csc\theta$ =$ \frac{r}{y}$ =$ \frac{13}{12}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.