Trigonometry 7th Edition

Published by Cengage Learning
ISBN 10: 1111826854
ISBN 13: 978-1-11182-685-7

Chapter 1 - Section 1.5 - More on Identities - 1.5 Problem Set - Page 46: 40

Answer

$ \frac{1}{\sin\theta\cos\theta}$

Work Step by Step

Given expression is- $ \frac{\cos\theta}{\sin\theta} + \frac{\sin\theta}{\cos\theta} $ = $ \frac{\cos\theta}{\cos\theta}.\frac{\cos\theta}{\sin\theta} + \frac{\sin\theta}{\cos\theta}.\frac{\sin\theta}{\sin\theta}$ = $ \frac{\cos^{2}\theta}{\sin\theta\cos\theta} + \frac{\sin^{2}\theta}{\sin\theta\cos\theta} $ = $ \frac{\cos^{2}\theta + \sin^{2}\theta}{\sin\theta\cos\theta}$ From first Pythagorean identity , substituting, $\cos^{2}\theta + \sin^{2}\theta$ = 1 Expression becomes- = $ \frac{1}{\sin\theta\cos\theta}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.