Trigonometry 7th Edition

Published by Cengage Learning
ISBN 10: 1111826854
ISBN 13: 978-1-11182-685-7

Chapter 1 - Section 1.5 - More on Identities - 1.5 Problem Set - Page 46: 42

Answer

(a). $ a^{2} - 1$ (b). $\tan^{2}\theta$

Work Step by Step

(a). Given expression is- $ (a+1) (a-1)$ = $ a^{2} -a + a -1$ ( By FOIL method) = $ a^{2} - 1$ ALTERNATE METHOD- Recall that $(A+B) (A-B) = A^{2} - B^{2}$ Therefore $ (a+1) (a-1)$ = $ a^{2} - 1^{2}$ = $ a^{2} - 1$ (b). Given expression is- $ (\sec\theta+1) (\sec\theta-1)$ = $ \sec^{2}\theta -\sec\theta + \sec\theta -1$ ( By FOIL method) = $ \sec^{2}\theta - 1$ = $\tan^{2}\theta$ ( Recall second Pythagorean identity) ALTERNATE METHOD- Recall that $(A+B) (A-B) = A^{2} - B^{2}$ Therefore $ (\sec\theta+1) (\sec\theta-1)$ = $ \sec^{2}\theta - 1^{2}$ = $ \sec^{2}\theta - 1$ = $\tan^{2}\theta$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.