Trigonometry 7th Edition

Published by Cengage Learning
ISBN 10: 1111826854
ISBN 13: 978-1-11182-685-7

Chapter 1 - Test - Page 51: 18

Answer

$\sin\theta$ = $ \frac{-1}{\sqrt {10}}$ $\cos\theta$ =$ \frac{-3}{\sqrt {10}}$ $\tan\theta$ = $ \frac{1}{3}$ $\cot\theta$ = $ 3$ $\sec\theta$ = -$ \frac{\sqrt {10}}{3}$ $\csc\theta$ = -$ \sqrt {10}$

Work Step by Step

Given, point (-3, -1) is on the terminal side of $\theta$ in standard position, we may apply Definition I to find all six trigonometric functions- We got $ x = -3, y = -1$ Therefore r= $\sqrt {x^{2} + y^{2}}$ = $\sqrt {(-3)^{2} + (-1)^{2}}$ = $\sqrt {9 + 1}$ = $\sqrt {10}$ i.e. $ x = -3$, $y = -1,$ and $ r= \sqrt {10}$ Applying Definition I- $\sin\theta$ =$ \frac{y}{r}$ = $ \frac{-1}{\sqrt {10}}$ $\cos\theta$ =$ \frac{x}{r}$ =$ \frac{-3}{\sqrt {10}}$ $\tan\theta$ =$ \frac{y}{x}$ =$ \frac{-1}{-3}$ = $ \frac{1}{3}$ $\cot\theta$ =$ \frac{x}{y}$ =$ \frac{-3}{-1}$ = $ 3$ $\sec\theta$ =$ \frac{r}{x}$ =$ \frac{\sqrt {10}}{-3}$ = -$ \frac{\sqrt {10}}{3}$ $\csc\theta$ =$ \frac{r}{y}$ =$ \frac{\sqrt {10}}{-1}$= -$ \sqrt {10}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.