Trigonometry 7th Edition

Published by Cengage Learning
ISBN 10: 1111826854
ISBN 13: 978-1-11182-685-7

Chapter 1 - Test - Page 51: 24

Answer

$\cos\theta$ = $\frac{1}{3}$ $\sin\theta$ = - $\frac{2\sqrt 2}{3}$ $\tan\theta$ = $-2\sqrt 2$

Work Step by Step

Given $\sec\theta$ = 3 Using reciprocal identity- $\cos\theta$ = $\frac{1}{\sec\theta}$ $\cos\theta$ = $\frac{1}{3}$ From first Pythagorean identity- $\sin\theta$ = ± $\sqrt {1-\cos^{2}\theta}$ As $\theta$ terminates in Q IV, therefore $\sin\theta$ will be negative, hence- $\sin\theta$ = - $\sqrt {1-\cos^{2}\theta}$ = - $\sqrt {1-(\frac{1}{3})^{2}}$ = -$\sqrt {1 - \frac{1}{9}}$ = -$\sqrt {\frac{9-1}{9}}$ = -$\sqrt {\frac{8}{9}}$ i.e. $\sin\theta$ = - $\frac{2\sqrt 2}{3}$ From second Pythagorean identity, $\tan\theta$ = ± $\sqrt {\sec^{2}\theta - 1}$ As $\theta$ terminates in Q IV, therefore $\tan\theta$ will be negative, hence- $\tan\theta$ = - $\sqrt {\sec^{2}\theta - 1}$ = - $\sqrt {3^{2} - 1}$ = - $\sqrt {9 - 1}$ = - $\sqrt {8}$ i.e. $\tan\theta$ = $-2\sqrt 2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.