Trigonometry 7th Edition

Published by Cengage Learning
ISBN 10: 1111826854
ISBN 13: 978-1-11182-685-7

Chapter 2 - Section 2.2 - Calculators and Trigonometric Functions of an Acute Angle - 2.2 Problem Set - Page 73: 93

Answer

$\sec\theta=-\frac{13}{5},\sin\theta=-\frac{12}{13},\csc\theta=-\frac{13}{12},\tan\theta=\frac{12}{5},\cot\theta=\frac{5}{12}$

Work Step by Step

Since $\cos \theta=-\frac{5}{13}$, we have $\sec \theta=-\frac{13}{5}$. Now $\sin^{2}\theta+\cos^{2}\theta=1$, that is, $\sin^{2}\theta=1-\cos^{2}\theta$ or $\sin^{2}\theta=1-\frac{25}{169}=\frac{144}{169}$ Hence $\sin \theta= -\frac{12}{13}$ (As $\theta$ lies in QIII) which gives $\csc \theta=-\frac{13}{12}$ Further, we have $\tan \theta=\frac{\sin\theta}{\cos\theta}=\frac{12}{5}$ and $\cot\theta=\frac{1}{\tan\theta}=\frac{5}{12}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.