Trigonometry 7th Edition

Published by Cengage Learning
ISBN 10: 1111826854
ISBN 13: 978-1-11182-685-7

Chapter 4 - Section 1.5 - More on Identities - 1.5 Problem Set - Page 47: 78

Answer

Showed that given statement, $\cos\theta\cot\theta + \sin\theta$ = $\csc\theta$, is an identity as left side transforms into right side.

Work Step by Step

Given statement is- $\cos\theta\cot\theta + \sin\theta$ = $\csc\theta$ Left Side = $\cos\theta\cot\theta + \sin\theta$ = $\cos\theta\times\frac{\cos\theta}{\sin\theta} + \sin\theta$ (Using ratio identity for $\cot\theta$) =$\frac{\cos^{2}\theta}{\sin\theta} + \sin\theta. \frac{\sin\theta}{\sin\theta} $ =$\frac{\cos^{2}\theta}{\sin\theta} + \frac{\sin^{2}\theta}{\sin\theta} $ =$\frac{\cos^{2}\theta + \sin^{2}\theta}{\sin\theta}$ =$\frac{1}{\sin\theta}$ = $\csc\theta$ = Right Side i.e. Left Side transforms into Right Side i.e. Given statement, $\cos\theta\cot\theta + \sin\theta$ = $\csc\theta$, is an identity.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.