Trigonometry 7th Edition

Published by Cengage Learning
ISBN 10: 1111826854
ISBN 13: 978-1-11182-685-7

Chapter 4 - Section 1.5 - More on Identities - 1.5 Problem Set - Page 47: 80

Answer

Showed that given statement, $\tan^{2}\theta + 1$ = $\sec^{2}\theta$, is an identity as left side transforms into right side.

Work Step by Step

Given statement is- $\tan^{2}\theta + 1$ = $\sec^{2}\theta$ Left Side = $\tan^{2}\theta + 1$ = $(\frac{\sin\theta}{\cos\theta})^{2} + 1$ (Using ratio identity for $\tan\theta$ ) =$\frac{\sin^{2}\theta}{\cos^{2}\theta} + \frac{\cos^{2}\theta}{\cos^{2}\theta} $ =$\frac{\sin^{2}\theta + \cos^{2}\theta}{\cos^{2}\theta}$ =$\frac{1}{\cos^{2}\theta}$ = $\sec^{2}\theta$ = Right Side i.e. Left Side transforms into Right Side i.e. Given statement, $\tan^{2}\theta + 1$ = $\sec^{2}\theta$, is an identity.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.