Trigonometry 7th Edition

Published by Cengage Learning
ISBN 10: 1111826854
ISBN 13: 978-1-11182-685-7

Chapter 4 - Section 1.5 - More on Identities - 1.5 Problem Set - Page 47: 93

Answer

Showed that given statement, $ \sin\theta( \sec\theta + \csc\theta) $ = $\tan\theta + 1$, is an identity as left side transforms into right side.

Work Step by Step

Given statement is- $ \sin\theta( \sec\theta + \csc\theta) $ = $\tan\theta + 1$ Left Side = $ \sin\theta$ $( \sec\theta + \csc\theta) $ = $ \sin\theta $ $( \frac{1}{\cos\theta} +\frac{1}{\sin\theta}) $ = $ \frac{\sin\theta}{\cos\theta} +\frac{\sin\theta}{\sin\theta} $ = $ \tan\theta$ + 1 = Right Side i.e. Left Side transforms into Right Side i.e. Given statement,$ \sin\theta( \sec\theta + \csc\theta) $ = $\tan\theta + 1$, is an identity.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.