College Physics (7th Edition)

Published by Pearson
ISBN 10: 0-32160-183-1
ISBN 13: 978-0-32160-183-4

Chapter 2 - Kinematics: Description of Motion - Learning Path Questions and Exercises - Exercises - Page 63: 52

Answer

(a)$t_1>t_2$ (b) $t_1=1.73\,\mathrm{s}$ $t_2=0.72\,\mathrm{s}$

Work Step by Step

(a) $t_1>t_2$ The object begins accelerating from rest and so travels with a lower average speed in phase 1 than it does in phase 2. Hence it takes longer for it to cover the first $3.00\, \mathrm{m}$ (b) For phase 1, $x_1=3.00\,\mathrm{m}$, $x_{01}=0$, $v_{01}=0$ and $a=2.00\,\mathrm{m/s^2}$ Using the kinematic equation: \begin{align*} x_1&=x_{01}+v_{01}t_1+{1\over 2}at_1^2\\ 3.00&=0+0+0.5\times 2.00 t_1^2\\ t_1^2&=3.00\\ t_1&=\sqrt{3.00}\\ t_1&=1.73\,\mathrm{s} \end{align*} For phase 2, $x_2=6.00\,\mathrm{m}$, $x_{02}=3.00\,\mathrm{m}$, $v_{02}=v_{01}+at_1=0+2.00(1.73)=3.46\,\mathrm{m/s}$ [i.e., the final velocity of phase 1 is the initial velocity of phase 2] and $a=2.00\,\mathrm{m/s^2}$. \begin{align*} x_2&=x_{02}+v_{02}t_2+{1\over 2}at_2^2\\ 6.00&=3.00+3.46t_2+{1\over 2}(2.00)t_2^2\\ 1.00t_2^2+3.46t_2-3.00&=0\\ \mathrm{Solving, we \,get}\\ t_2&=0.72\,\mathrm{s} \end{align*} Clearly $t_1>t_2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.