College Physics (7th Edition)

Published by Pearson
ISBN 10: 0-32160-183-1
ISBN 13: 978-0-32160-183-4

Chapter 2 - Kinematics: Description of Motion - Learning Path Questions and Exercises - Exercises - Page 63: 56

Answer

(a) If the travelling speed is doubled, the stopping distance will be $4x$. (b) $x=6.8\,\mathrm{m}$

Work Step by Step

(a) It is given that $\Delta x=x$ and $v_i=v$. Since the car comes to a stop, $v_f=0$ and $a$ is negative. Using the kinematic equation \begin{align*} v_f^2&=v_i^2+2a\Delta x\\ 0^2&=v^2-2ax\\ x&={v^2\over 2a} \end{align*} If the initial speed $v'$ is doubled. i.e., $v'=2v$, then the new stopping distance $$x'={v'^2\over 2a}={4v^2\over 2a}=4x$$ The stopping distance quadruples if the initial speed is doubled. (b) If $x=3.00\,\mathrm{m}$ and $v=40.0\,\mathrm{km/h}=11.1\,\mathrm{m/s}$, the acceleration is $$a={v^2\over 2x}={11.1^2\over 2(3.00)}={123\over 6.00}=20.5\,\mathrm{m/s^2}$$ Now, if $v=60.0\,\mathrm{km/h}=16.7\,\mathrm{m/s}$, the modified stopping distance will be $$x={v^2\over 2a}={16.7^2\over 2(20.5)}={279\over 41}=6.8\,\mathrm{m}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.