College Physics (7th Edition)

Published by Pearson
ISBN 10: 0-32160-183-1
ISBN 13: 978-0-32160-183-4

Chapter 2 - Kinematics: Description of Motion - Learning Path Questions and Exercises - Exercises - Page 63: 53

Answer

(a) $v_1>{1\over 2}v_2$ (b) $v_1=9.22\,\mathrm{m/s}$ and $v_2=13.0\,\mathrm{m/s}$

Work Step by Step

(a) $v_1>{1\over 2}v_2$ This basically means that $v_2$ (the speed at the end of phase 2) is less than twice $v_1$ (the speed at the end of phase 1). I.e., the final speed $v$ does not double if the displacment ($\Delta x$) is doubled. This can be seen with the help of the kinematic equation, $$v^2=v_0^2+2a\Delta x$$ If we set $v_0=0$ then $v^2=2a\Delta x$, or $v=\sqrt{2a\Delta x}$. Now, if $x\rightarrow 2x$, then $v\rightarrow \sqrt{2}v$, which is about 1.4 times v--less than twice of v. Hence, $v_2<2v_1$ or $v_1>{1\over 2}v_2$. (b) For phase 1, $v_{01}=0$, $a=0.850\,\mathrm{m/s^2}$, $x_{01}=0$ and $x_1=50\,\mathrm{m}$. Using the kinematic equation \begin{align*} v_1^2&=v_{01}^2+2a(x_1-x_{01})\\ &=0+2(0.850)(50-0)\\ &=85.0\\ v_1&=\sqrt{85.0}\\ &=9.22\,\mathrm{m/s} \end{align*} For phase 2, $v_{02}=v_1=9.22\mathrm{m/s}$, $a=0.850\,\mathrm{m/s^2}$, $x_{02}=50\,\mathrm{m}$, $x_2=100\,\mathrm{m}$. And so, \begin{align*} v_2^2&=v_{02}^2+2a(x_2-x_{02})\\ &=9.22^2+2(0.850)(100-50)\\ &=85.0+85.0\\ &=170\\ v_2&=\sqrt{170}\\ &=13.0\,\mathrm{m/s} \end{align*} And so $v_1>{1\over 2}v_2$ since $9.22>{1\over 2}(13.5)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.