College Physics (7th Edition)

Published by Pearson
ISBN 10: 0-32160-183-1
ISBN 13: 978-0-32160-183-4

Chapter 2 - Kinematics: Description of Motion - Learning Path Questions and Exercises - Exercises - Page 65: 82

Answer

(a) $t=5.00\,\mathrm{s}$ (b) $\Delta x=112\,\mathrm{m}$ (c) $a=4.50\,\mathrm{m/s^2}$ (d) $\Delta x=226\,\mathrm{m}$

Work Step by Step

(a) For the braking phase, $v_0=45.0$, $v=0$ and $a=-9.00\,\mathrm{m/s^2}$ Using the kinematic equation: \begin{align*} v&=v_0+at\\ 0&=45.0+(-9.00)t\\ t&={45.0\over 9.00}\\ t&=5.00\,\mathrm{s} \end{align*} Time taken during the braking phase is $5.00\,\mathrm{s}$. (b) To calculate distance travelled during the braking phase, we use the kinematic equation: \begin{align*} \Delta x&=v_0t+{1\over 2}at^2\\ &=(45.0)(5.00)+{1\over 2} (-9.00)(5.00)^2\\ &=225-113\\ &=112\,\mathrm{m} \end{align*} (c) During the speeding-up phase, $v_0=0$, $v=45.0$ and $t=15.0-5.00=10.0\,\mathrm{s}$ From the defintion of acceleration, $$a={v-v_0\over\Delta t}={45.0-0\over 10.0}=4.50\,\mathrm{m/s^2}$$ The acceleration of the car during the speeding-up phase is $4.50\,\mathrm{m/s^2}$ (d) To compute the distance covered during the speedin-up phase, we use the kinematic equation: \begin{align*} v^2&=v_0^2+2a\Delta x\\ (45.0)^2&=0+2(4.50)\Delta x\\ 9.00\Delta x&=2030\\ \Delta x&={2030\over 9.00}\\ \Delta x&=226\,\mathrm{m} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.