College Physics (7th Edition)

Published by Pearson
ISBN 10: 0-32160-183-1
ISBN 13: 978-0-32160-183-4

Chapter 2 - Kinematics: Description of Motion - Learning Path Questions and Exercises - Exercises - Page 65: 83

Answer

(a) $v=297\,\mathrm{m/s}$ (b) $a=3.66\,\mathrm{m/s^2}$ (c) $t=108\,\mathrm{s}$

Work Step by Step

(a) During the free-fall, $\Delta x=8000\,\mathrm{m}$, $v_0=200\,\mathrm{m/s}$ and $a=3.00\,\mathrm{m/s^2}$. To find the speed of the probe at the end of the free-fall, we use the kinematic equation: \begin{align*} v^2&=v_0^2+2a\Delta x\\ &=(200)^2+2(3.00)(8000)\\ &=40000+48000\\ &=88000\\ v&=\sqrt{88000}\\ &=297\,\mathrm{m/s} \end{align*} (b) To determine the minimum constant deceleration during the remainder $12000 \mathrm{m}$ fall, we use $v=20.0\,\mathrm{m/s}$, $v_0=297\,\mathrm{m/s}$ and $\Delta x=12000\,\mathrm{m}$. Using \begin{align*} v^2=v_0^2+2a\Delta x\\ (20.0)^2&=(297)^2+2a(12000)\\ 400&=88200+a(24000)\\ a&=-{87800\over 24000}\\ a&=-3.66\,\mathrm{m/s^2} \end{align*} (c) Time taken for the free-fall depends on: $v=297\,\mathrm{m/s}$, $v_0=200\,\mathrm{m/s}$ and $a=3.00\,\mathrm{m/s^2}$ Using the kinematic equation: \begin{align*} v&=v_0+at\\ 297&=200+(3.00)t_1\\ t_1&={97\over 3.00}\\ t_1&=32\,\mathrm{s} \end{align*} Time-taken for the descend with the parachute depends on: $v_0=297\,\mathrm{m/s}$, $a=-3.66\,\mathrm{m/s^2}$ and $\Delta x=12000\,\mathrm{m}$. Hence, \begin{align*} \Delta x&=v_0t+{1\over 2} at^2\\ 12000&=(297)t_2+{1\over 2}(-3.66)t_2^2\\ 1.833t_2^2-297t_2+12000&=0\\ \mathrm{On \,\,solving},\\ t_2&=76\,\mathrm{s} \end{align*} Total time taken to land $=t_1+t_2=32+76=108\,\mathrm{s}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.