Answer
$V=\dfrac{256}{3}\pi \approx 268.08\text{ cubic centimeters}$
$\text{surface area} = 64\pi \approx 201.06 \text{ square centimeters}$
Work Step by Step
RECALL:
(1) The surface area of a sphere with radius $r$ is given by the formula:
$\text{surface area} = 4\pi{r^2}$
(2) The volume $V$ of a sphere with radius $r$ is given by the formula:
$V = \dfrac{4}{3}\pi{r^3}$
Use the formulas above and the given radius of 4 centimeters to obtain:
$V=\dfrac{4}{3}\pi{r^3}
\\V=\dfrac{4}{3}\pi(4^3)
\\V=\dfrac{4}{3}\pi(64)
\\V=\dfrac{256}{3}\pi \approx 268.08\text{ cubic centimeters}$
$\text{surface area} = 4\pi{r^2}
\\\text{surface area} = 4\pi(4^2)
\\\text{surface area} = 4\pi(16)
\\\text{surface area} = 64\pi \approx 201.06 \text{ square centimeters}$