Answer
$V=648\pi \approx 2035.75 \text{ cubic inches}$
$\text{surface area} = 306\pi \approx 961.33 \text{ square inches}$
Work Step by Step
RECALL:
(1) The surface area of a right circular cylinder with radius $r$ and height $h$ is given by the formula:
$\text{surface area} = 2\pi{r^2}+2\pi{rh}$
(2) The volume $V$ of a right circular cylinder with radius $r$ and height $h$ is given by the formula:
$V = \pi{r^2}h$
The right circular cylinder has
radius = 9 inches
height = 8 inches
Use the formulas and given measurements above to obtain:
$V=\pi{r^2h}
\\V=\pi(9^2)(8)
\\V=\pi(81)(8)
\\V=648\pi \approx 2035.75 \text{ cubic inches}$
$\text{surface area} = 2\pi{r^2}+2\pi{rh}
\\\text{surface area} = 2\pi(9^2)+2\pi(9)(8)
\\\text{surface area} = 2\pi(81) +144\pi
\\\text{surface area} = 162\pi +144\pi
\\\text{surface area} = 306\pi \approx 961.33 \text{ square inches}$