Answer
$V=576\pi \approx 1809.56\text{ cubic inches}$
$\text{surface area} = 272\pi \approx 854.51 \text{ square inches}$
Work Step by Step
RECALL:
(1) The surface area of a right circular cylinder with radius $r$ and height $h$ is given by the formula:
$\text{surface area} = 2\pi{r^2}+2\pi{rh}$
(2) The volume $V$ of a right circular cylinder with radius $r$ and height $h$ is given by the formula:
$V = \pi{r^2}h$
The right circular cylinder has
radius = 8 inches
height = 9 inches
Use the formulas and given measurements above to obtain:
$V=\pi{r^2h}
\\V=\pi(8^2)(9)
\\V=\pi(64)(9)
\\V=576\pi \approx 1809.56\text{ cubic inches}$
$\text{surface area} = 2\pi{r^2}+2\pi{rh}
\\\text{surface area} = 2\pi(8^2)+2\pi(8)(9)
\\\text{surface area} = 2\pi(64) +144\pi
\\\text{surface area} = 128\pi +144\pi
\\\text{surface area} = 272\pi \approx 854.51 \text{ square inches}$