Answer
$\begin{array}{ c c }
a) & \mathrm{Choice}\mathbf{\ E}\\
& \\
b) & \mathrm{Choice}\mathbf{\ G}\\
& \\
c) & \mathrm{Choice}\mathbf{\ F}\\
& \\
d) & \mathrm{Choice}\mathbf{\ F}
\end{array}$
Work Step by Step
$\begin{array}{ c l l }
a) & =\left(\left(\dfrac{4}{9}\right)^{\dfrac{1}{2}}\right)^{3} & \begin{array}{l}
\mathrm{Apply\ the\ rule}\\
a^{nm} =\left( a^{n}\right)^{m}
\end{array}\\
& & \\
& =\left(\sqrt{\dfrac{4}{9}}\right)^{3} & \begin{array}{l}
\mathrm{Apply\ the\ rule}\\
a^{1/n} =\sqrt[n]{a}
\end{array}\\
& & \\
& =\left(\dfrac{\sqrt{4}}{\sqrt{9}}\right)^{3} & \begin{array}{l}
\mathrm{Apply\ the\ rule}\\
\sqrt{\dfrac{a}{b}} =\dfrac{\sqrt{a}}{\sqrt{b}}
\end{array}\\
& & \\
& =\left(\dfrac{2}{3}\right)^{3} & \begin{array}{l}
\mathrm{Simplify\ by}\\
\mathrm{evaluating\ the\ }\\
\mathrm{root}
\end{array}\\
& & \\
& =\dfrac{2^{3}}{3^{3}} & \begin{array}{l}
\mathrm{Apply\ the\ rule}\\
\left(\dfrac{a}{b}\right)^{n} =\dfrac{a^{n}}{b^{n}}
\end{array}\\
& & \\
& =\dfrac{8}{27} & \begin{array}{l}
\mathrm{Simplify} .\ \mathrm{The\ result\ matches}\\
\mathrm{Choice}\mathbf{\ E} .\
\end{array}\\
& & \\
b) & =\dfrac{1}{\left(\dfrac{4}{9}\right)^{\dfrac{3}{2}}} & \\
& =\dfrac{1}{\dfrac{8}{27}} & \begin{array}{l}
\mathrm{In\ case} \ a) \ \mathrm{we}\\
\mathrm{found\ that\ }\\
\left(\dfrac{4}{9}\right)^{\dfrac{3}{2}} =\dfrac{8}{27}
\end{array}\\
& & \\
& =\dfrac{( 27) 1}{( 27)\dfrac{8}{27}} & \begin{array}{l}
\mathrm{Multiply\ the\ numerator}\\
\mathrm{and\ denominator\ of\ the}\\
\mathrm{complex\ fraction} \ \mathrm{by\ } 27
\end{array}\\
& & \\
& =\dfrac{27}{8} & \mathrm{Simplify} .\mathrm{\ The\ result\ matches\ Choice\ }\mathbf{G} .\\
& & \\
c) & =-\left(\left(\dfrac{9}{4}\right)^{\dfrac{1}{2}}\right)^{3} & \begin{array}{l}
\mathrm{Apply\ the\ rule}\\
a^{nm} =\left( a^{n}\right)^{m}
\end{array}\\
& & \\
& =-\left(\sqrt{\dfrac{9}{4}}\right)^{3} & \begin{array}{l}
\mathrm{Apply\ the\ rule}\\
a^{1/n} =\sqrt[n]{a}
\end{array}\\
& & \\
& =-\left(\dfrac{\sqrt{9}}{\sqrt{4}}\right)^{3} & \begin{array}{l}
\mathrm{Apply\ the\ rule}\\
\sqrt{\dfrac{a}{b}} =\dfrac{\sqrt{a}}{\sqrt{b}}
\end{array}\\
& & \\
& =-\left(\dfrac{3}{2}\right)^{3} & \begin{array}{l}
\mathrm{Simplify\ by}\\
\mathrm{evaluating\ the\ }\\
\mathrm{root}
\end{array}\\
& & \\
& =-\dfrac{3^{3}}{2^{3}} & \begin{array}{l}
\mathrm{Apply\ the\ rule}\\
\left(\dfrac{a}{b}\right)^{n} =\dfrac{a^{n}}{b^{n}}
\end{array}\\
& & \\
& =-\dfrac{27}{8} & \begin{array}{l}
\mathrm{Simplify} .\ \mathrm{The\ result\ matches}\\
\mathrm{Choice}\mathbf{\ F} .\
\end{array}\\
& & \\
d) & =-\dfrac{27}{8} & \begin{array}{l}
\mathrm{In\ case} \ b) \ \mathrm{we\ found\ that}\\
\left(\dfrac{4}{9}\right)^{-3/2} =\dfrac{27}{8} .\ \mathrm{Therefore\ result\ is\ the\ opposite\ }\\
\mathrm{number\ which\ matches\ }\mathbf{Choice\ F} .\
\end{array}
\end{array}$