Answer
False
$\frac{x^{2}-25}{x-5} = x+5; x \ne 5;$
Work Step by Step
$\frac{x^{2}-25}{x-5} $
$[A^{2}-B^{2} = (A+B)(A-B)]$
$[x^{2}-25 = x^{2} - 5^{2} =(x+5)(x-5]$
$= \frac{(x+5)(x-5)}{(x-5)}; x \ne 5;$
Divide out common factors.
$= x+5; x \ne 5;$