Answer
$y(x)=2e^{3x}+C_2e^{2x}+C_1$
Work Step by Step
Suppose that $a= \dfrac{dy}{dx}$ and $ \dfrac{da}{dx}= \dfrac{d^2y}{dx^2}$
Integrating factor; $I.P.=e^{\int-2 dx}=e^{-2x}$
Now, $\dfrac{d}{dx}(ae^{-2x})=6e^x$
Integrate to obtain: $ae^{-2x}=6e^x+C \implies \dfrac{dy}{dx}=(6e^x+C)e^{2x}$
Therefore, the general solution is: $y(x)=2e^{3x}+C_2e^{2x}+C_1$