Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.11 Some Higher-Order Differential Equations - Problems - Page 105: 6

Answer

$y=\ln(\ln (\sec x + \tan x)+\frac{1}{C}\ln (\sec x + \tan x)+C_2$

Work Step by Step

We are given: $y′′+y'\tan x=(y')^2$ Suppose that $a=\frac{dy}{dx}$ Now, $\frac{da}{dx}=\frac{d^2y}{dx^2}=\frac{da}{dy}.\frac{da}{dx}=a\frac{da}{dy}$ Substitute into the equation: $\frac{da}{dx}+a\tan x=a^2$ Dividing both sides by $a^2$ $\frac{1}{a^2}\frac{da}{dx}+\frac{1}{a}\tan x=1$ Let $t=\frac{1}{a} \rightarrow \frac{dt}{dx}=-\frac{1}{a^2}\frac{da}{dx}$ The equation becomes: $ \frac{dt}{dx} -t \tan x=-1$ Integrating factor: $I(x)= e^{\tan x dx }=e^{\ln |\sec x|}=\sec x$ Hence, $\frac{d}{dx}(t \sec x)=-\sec x$ Integrating both sides: $t \sec x = \ln (\sec x +\tan x)+C$ $t=\frac{ \ln (\sec x +\tan x)+C}{\sec x}$ $a=\frac{\sec x }{\ln |\sec x +\tan x|}+\frac{\sec x}{C}$ $\frac{dy}{dx}=\frac{\sec x}{\ln |\sec x + \tan x|}+\frac{\sec x}{C}$ Continue to integrate: $y=\int \frac{\sec x}{\ln |\sec x +\tan x|}dx+\int \frac{\sec x}{C}dx$ $y=\int \frac{1}{t}dt+\frac{1}{C}\int \sec x dx$ The final solution is: $y=\ln(\ln (\sec x + \tan x)+\frac{1}{C}\ln (\sec x + \tan x)+C_2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.