Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.11 Some Higher-Order Differential Equations - Problems - Page 105: 5

Answer

$y(x)=\arcsin(C_1x+C_2)$

Work Step by Step

We are given: $$y''=(y')^2\tan y$$ Suppose that $a= \dfrac{dy}{dx}$ and $ \dfrac{da}{dx}= \dfrac{d^2y}{dx^2}=\dfrac{dy}{dx}\dfrac{dx}{dy}=a\dfrac{da}{dy}$ Now, $a\dfrac{da}{dy}=a^2\tan y$ $\dfrac{da}{dy}=a\tan y$ $\frac{da}{a}=\tan y dy$ Integrate to obtain: $\ln a=-\ln (\cos x)+C$ $ \implies a=C\sec(y)$ $\implies \frac{dy}{dx}=C\sec(y)$ $\implies \cos (y)dy=Cdx$ Continue to integrate: $\sin y=C_1x+C_2$ Therefore, the general solution is: $y(x)=\arcsin(C_1x+C_2)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.