Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.7 Modeling Problems Using First-Order Linear Differential Equations - Problems - Page 70: 11

Answer

$i=\frac{12}{5}e^{-3t}+\frac{3}{5}[3\sin (4t)-4 \cos (4t)]$

Work Step by Step

Using RC Circuit we get: $$\frac{di}{dt}+\frac{R}{L}i=\frac{E}{L}$$ We are given: $E=10\sin 4t$ $L=\frac{2}{3}h$ $R=2$ Substituting: $$\frac{di}{dt}+3i=15\sin 4t$$ The solution can be found by: $$Q=e^{-\int3 dt}(c+\int 15\sin (4t)e^{3t}dt)$$ $$Q=e^{-3t}(c+15\sin (4t)e^{3t}dt)$$ $$Q=e^{-3t}[c+\frac{3}{5}e^{3t}(3\sin (4t)-4\cos(4t)]$$ $$Q=ce^{-3t}+\frac{3}{5}[3\sin (4t)-4\cos(4t)]$$ Since $t=0,i=0$, we get: $$0=c+\frac{3}{5}(3\sin 0-4\cos0)\rightarrow c=\frac{12}{5}$$ Thus the current in the circuit for $t \geq 0$ is: $$i=\frac{12}{5}e^{-3t}+\frac{3}{5}[3\sin (4t)-4 \cos (4t)]$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.