Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.7 Modeling Problems Using First-Order Linear Differential Equations - Problems - Page 70: 17

Answer

$i=\frac{E_0C}{1-aRC}(\frac{1}{RC}e^{\frac{-t}{RC}}-ae^{-at})$

Work Step by Step

Using RC Circuit, we get: $$\frac{dq}{dt}+\frac{q}{RC}=\frac{E}{R}$$ Since $E=E_0e^{-at}$, we get: $$\frac{dq}{dt}+\frac{q}{RC}=\frac{E_0}{R}e^{-at}$$ The integrating factor is: $$I=e^{\frac{1}{RC}dt}=e^{\frac{t}{RC}}$$ Multiplying by integrating factor: $$e^{\frac{t}{RC}}\frac{dq}{dt}+e^{\frac{t}{RC}}\frac{q}{RC}=e^{\frac{t}{RC}}\frac{E}{R}$$ $$\frac{d}{dt}(qe^{\frac{t}{RC}})=e^{\frac{1}{RC-a}t}\frac{E_0}{R}$$ Integrating both sides: $$qe^{\frac{t}{RC}}=c+e^{\frac{1}{RC-a}t}\frac{E_0C}{1-aRC}$$ $$q=ce^{\frac{-t}{RC}}+\frac{E_0C}{1-aRC}e^{-at}$$ Since $q(0)=0$, we have: $$0=c+\frac{E_0C}{1-aRC}$$ Solve for $c$: $$ \rightarrow c=-\frac{E_0C}{1-aRC}$$ Thus, the current flowing in an RC circuit is: $$i=\frac{E_0C}{1-aRC}(\frac{1}{RC}e^{\frac{-t}{RC}}-ae^{-at})$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.