Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.7 Modeling Problems Using First-Order Linear Differential Equations - Problems - Page 70: 16

Answer

$i=\frac{E_0}{R}(1-e^{\frac{R}{L}t})$

Work Step by Step

Using RL Circuit, we get: $$\frac{di}{dt}+\frac{R}{L}i=\frac{E}{L}$$ The integrating factor is: $$I=e^{\frac{R}{L}dt}=e^{\frac{R}{L}t}$$ Multiplying by integrating factor: $$e^{\frac{R}{L}t}\frac{di}{dt}+e^{\frac{R}{L}t}\frac{R}{L}i=e^{\frac{R}{L}t}\frac{E}{L}$$ $$\frac{d}{dt}(e^{\frac{R}{L}t}q)=e^{\frac{R}{L}t}\frac{E}{L}$$ Integrating both sides: $$e^{\frac{R}{L}t}q=c+e^{\frac{R}{L}t}\frac{E_0}{R}$$ $$q=ce^{-\frac{R}{L}t}+\frac{E_0}{R}$$ Since $i(0)=0$, we have: $$0=c+\frac{E_0}{R}$$ sOLVE FOR $C$: $$ \rightarrow c=-\frac{E_0}{R}$$ Thus, the current flowing in an RL circuit is: $$i=\frac{E_0}{R}(1-e^{\frac{R}{L}t})$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.