Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.7 Modeling Problems Using First-Order Linear Differential Equations - Problems - Page 70: 12

Answer

$i=\frac{1}{5}[-4e^{-4t}-12\sin (3t)+9 \cos (3t)]$

Work Step by Step

Using RC Circuit we get: $$\frac{dq}{dt}+\frac{q}{RC}=\frac{E}{R}$$ We are given: $E=10\cos 3t$ $C=\frac{1}{8}R$ $R=2$ Substituting: $$\frac{dq}{dt}+4q=5\cos 3t$$ The solution can be found by: $$Q=e^{-\int4 dt}(c+\int 5\cos (3t)e^{4}dt)$$ $$Q=ce^{-4t}+e^{-4t}[\frac{1}{5})3\sin (3t)e^{4t}+4\cos(3t))e^{4t}]$$ $$Q=ce^{-4t}+\frac{1}{5}[3\sin (3t)+4\cos(3t)]$$ Since $q(0)=1$, we get: $$1=c+\frac{4}{5} \rightarrow c=\frac{1}{5}$$ The charge is: $$q=\frac{1}{5}e^{-4t}+\frac{1}{5}[3\sin (3t)+4\cos (3t)]$$ Thus the current in the circuit for $t \geq 0$ is: $$i=\frac{1}{5}[-4e^{-4t}-12\sin (3t)+9 \cos (3t)]$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.