Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.8 Change of Variables - Problems - Page 81: 58

Answer

\[y(x)=\frac{Ce^x}{x}\]

Work Step by Step

\[\frac{dy}{dx}=\frac{y}{x}[\ln (xy)-1]\;\;\;\ldots (1)\] Substitute $\: V=xy\;\;\;\ldots (2)$ Differentiate (2) with respect to $x$ \[\frac{dV}{dx}=y+x\frac{dy}{dx}\] From (1) \[\frac{dV}{dx}=y+x\left[\frac{y}{x}\{\ln (xy)-1\}\right]\] \[\frac{dV}{dx}=y[1+\ln (xy)-1]\] \[\frac{dV}{dx}=y\ln (xy)\] From (2) \[\frac{dV}{dx}=\frac{V}{x}\ln (V)\] Separating variables \[\frac{dV}{V\ln V}=\frac{1}{x}dx\] Integrating, \[\int\frac{dV}{V\ln V}=\int\frac{1}{x}dx+\ln C_1\] $\ln C_1$ is constant of integration \[\ln |\ln V|=\ln |x|+\ln C_1\] \[\ln |\ln V|=\ln |C_1 x|\] \[\ln V=C_1 x\] \[V=e^{C_1 x}\] From (2) \[xy=Ce^x\] Where $C=e^{C_1}$ \[y=\frac{Ce^x}{x}\] Hence \[y(x)=\frac{Ce^x}{x}.\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.