Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.8 Change of Variables - Problems - Page 81: 62

Answer

See below

Work Step by Step

Given: $y'+2x^{-1}y-y^2=-2x^2$ a) If $y(x)=ax^r$ is the solution to this equation, we obtain: $y'(x)=arx^{r-1}$ Substitute this into the given equation: $arx^{r-1}+2x^{-1}ax^r-(ax^r)^2=-2x^2\\ \Leftrightarrow arx^{r-1}+2ax^{r-1}-a^2x^{2r}=-2x^{-2}$ Hence, we can know that $r=-1$ Substitute back: $-a+2a-a^2=-2\\ \Leftrightarrow a^2-a-2=0$ The solutions to this are: $a_1=2 \land a_2=-1$ The solutions to the equation are: $y_1(x)=-x^{-1}\\ y_2(x)=2x^{-1}$ b) If we substitute $y=2x^{-1}$ and the result of the previous problem into the given equation, we get: $-2x^{-2}-v^{-2}v'+2x^{-1}(2x^{-1}+v^{-1})-(2x^{-1}+v^{-1})^2=-2x^{-2}\\ \rightarrow -2x^{-2}-v^{-2}v'+4x^{-2}+2x^{-1}v^{-1}-4x^{-2}-4x^{-1}v^{-1}-v^{-2}=-2x^{-2}\\ \rightarrow -v^{-2}v'-2x^{-1}v^{-1}-v^{-2}=0\\ \rightarrow v'+2vx^{-1}+1=0$ Integrating factor is: $I(x)=e^{2\int x^{-1}}=e^2\ln x=x^2$ We have: $\frac{d}{dx}(x^2v)=-x^2\\\rightarrow x^2v=-\frac{x^3}{3}+c\\\rightarrow v(x)=-\frac{x^2}{3}(x^3-c)$ Therefore, the general solution to the Riccati equation is: $y(x)=2x^{-1}+\frac{x^{-2}}{3}(c-x^{-3})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.