Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.8 Change of Variables - Problems - Page 81: 63

Answer

See answers below

Work Step by Step

a) The Riccati differential equation: $$y'+7x^{-1}y-3y^2=3x^{-2}$$ We have $y=x^{-1}+w$ Derivative: $$y'=-x^{-2}+w'(x)$$ Substituting: $$-x^{-2}+w'+7x^{-1}(x^{-1}+w)-3(x^{-1}+w)^2=3x^{-2}$$ $$-x^{-2}+w'+7x^{-2}+7x^{-1}w-3x^{-2}-6x^{-1}w-3w^2=3x^{-2}$$ It is equivalent with the Bernoulli equation: $$w'+x^{-1}w=3w^2$$ b) Dividing the Bernoulli equation by $w^2$ $$w^{-2}w'+x^{-1}w^{-1}=3 (1)$$ With $v=w^{-1} \rightarrow v'=-w^{-2}w'$ The equation (1) becomes: $$v'-x^{-1}v=-3$$ The integrating factor is: $$I=e^{-\int x^{-1}}=e^{-\ln x}=x^{-1}$$ Then, $$\frac{d}{dx}(x^{-1}v)=-3x^{-1}$$ Integrating both sides: $$x^{-1}v=-3\ln x+C$$ where C is a constant of integration $$\rightarrow v=x(C-3\ln x)$$ $$\rightarrow w=\frac{1}{x(C-3\ln x)}$$ The final solution is: $$y=\frac{1}{x}(1+\frac{1}{C-3\ln x})$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.