Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 1 - Linear Equations in Linear Algebra - 1.9 Exercises - Page 79: 10

Answer

$A=\begin{bmatrix} 0&-1\\ -1&0 \end{bmatrix}$

Work Step by Step

$A=\begin{bmatrix} T(e_1) & ... & T(e_n)\\ \end{bmatrix}$ $e_1=\begin{bmatrix} 1\\ 0 \end{bmatrix}$ and $e_2=\begin{bmatrix} 0\\ 1 \end{bmatrix}$ 1. Reflect through vertical $x_2$ axis $\begin{bmatrix} -1&0\\ 0&1 \end{bmatrix}(e_1)=\begin{bmatrix} -1&0\\ 0&1 \end{bmatrix}\begin{bmatrix} 1\\ 0 \end{bmatrix}=\begin{bmatrix} -1\\ 0 \end{bmatrix}$ $\begin{bmatrix} -1&0\\ 0&1 \end{bmatrix}(e_2)=\begin{bmatrix} -1&0\\ 0&1 \end{bmatrix}\begin{bmatrix} 0\\ 1 \end{bmatrix}=\begin{bmatrix} 0\\ 1 \end{bmatrix}$ 2. Rotate points by $\frac{\pi}{2}$ radians (counterclockwise) $T(e_1)=\begin{bmatrix} 0&-1\\ 1&0 \end{bmatrix}\begin{bmatrix} -1\\ 0 \end{bmatrix}=\begin{bmatrix} 0\\ -1 \end{bmatrix}$ $T(e_2)=\begin{bmatrix} 0&-1\\ 1&0 \end{bmatrix}\begin{bmatrix} 0\\ 1 \end{bmatrix}=\begin{bmatrix} -1\\ 0 \end{bmatrix}$ $A=\begin{bmatrix} 0&-1\\ -1&0 \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.