Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 1 - Linear Equations in Linear Algebra - 1.9 Exercises - Page 79: 3

Answer

$A=\begin{bmatrix} \cos(\frac{3\pi}{2}) & -\sin(\frac{3\pi}{2})\\ \sin(\frac{3\pi}{2}) & \cos(\frac{3\pi}{2}) \end{bmatrix}$

Work Step by Step

$A=\begin{bmatrix} T(e_1) & ... & T(e_n)\\ \end{bmatrix}$ $e_1=\begin{bmatrix} 1\\ 0 \end{bmatrix}$ and $e_2=\begin{bmatrix} 0\\ 1 \end{bmatrix}$ $T(e_1)=\begin{bmatrix} \cos(\frac{3\pi}{2})\\ \sin(\frac{3\pi}{2}) \end{bmatrix}$ and $T(e_2)=\begin{bmatrix} -\sin(\frac{3\pi}{2})\\ \cos(\frac{3\pi}{2}) \end{bmatrix}$ $A=\begin{bmatrix} \cos(\frac{3\pi}{2}) & -\sin(\frac{3\pi}{2})\\ \sin(\frac{3\pi}{2}) & \cos(\frac{3\pi}{2}) \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.