Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 1 - Limits and Their Properties - 1.4 Exercises - Page 79: 26

Answer

$\lim\limits_{x\to1}(1-[[-\dfrac{x}{2}]])=2.$

Work Step by Step

$\lim\limits_{x\to1^+}(1-[[-\dfrac{x}{2}]])=1-[[-\dfrac{1^+}{2}]]=1-(-1)=2.$ $\lim\limits_{x\to1^-}(1-[[-\dfrac{x}{2}]])=1-[[-\dfrac{1^-}{2}]]=1-(-1)=2.$ Since $\lim\limits_{x\to1^+}(1-[[-\dfrac{x}{2}]])=\lim\limits_{x\to1^-}(1-[[-\dfrac{x}{2}]])\to$ $\lim\limits_{x\to1}(1-[[-\dfrac{x}{2}]])=2.$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.