Answer
$y=\frac{7}{2} x-\frac{19}{2}$
Work Step by Step
Let $(3,1)=(x_{1},y_{1})$ and $(5,8)=(x_{2},y_{2})$
The gradient of a line is given by the equation:
gradient$=\frac{y_{2}-,y_{1}}{x_{2}-x_{1}}$
By substituting in the given points, the gradient, $m$, of the line is:
$\frac{8-1}{5-3}$
$=\frac{7}{2}$
The equation for a line is given by:
$y-y_{1}=m\times(x-x_{1})$
Substituting $m=\frac{7}{2}$ and $(3,1)=(x_{1},y_{1})$
$y-1=\frac{7}{2}( x-3)$
$y-1=\frac{7}{2} x-\frac{21}{2}$
Adding $1$ to both sides,
$y=\frac{7}{2} x-\frac{19}{2}$