Answer
$V=-850t+12500$
at the end of 3 years, Value = $9950
Work Step by Step
let the intial year t= 0, when the value V is 12,500 dollars.
next year, (t=1), the value will be 12,500-850= 11,650 dollars
$(t_{1},V_{1})=(0,12500)$,$(t_{2},V_{2})=(1,11650)$
$\frac{t-t_{1}}{t_{2}-t_{1}}= \frac{V-V_{1}}{V_{2}-V_{1}}$
$\frac{t-0}{1-0}= \frac{V-12500}{11650-12500}$
$\frac{t-0}{1-0}= \frac{V-12500}{11650-12500}$
$V=-850t+12500$
at the end of 3 years (t=3),
$V=-850(3)+12500$
=$9950