Answer
$ y=0$
Work Step by Step
Given $$ y=x^{2}-6 x+9$$
So, we have
\begin{aligned} y&=x^{2}-6 x+9\\
&=(x-3)(x-3)\\
&=(x-3)^2 \\
\end{aligned}
The smallest value for a square power is zero.
So, we see that $ y=0$ is the minimum, when $ x=3$.